如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为A.B.C.D.
网友回答
B
解析分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.
解答:解:过点A作AD⊥OB于点D,
∵在Rt△AOD中,∠AOB=45°,
∴OD=AD=OA?cos45°=×1=,
∴BD=OB-OD=1-,
∴AB==,
∵AC是⊙O的直径,
∴∠ABC=90°,AC=2,
∴sinC=.
故选B.
点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.