小明想测量在太阳光下一栋楼高,他设计了一种测量方案如下:如图,小明站到点E处时,刚好使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,小明测得落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上),已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m).
网友回答
解:过点D作DG⊥AB,分别交AB、EF于点G、H,
则EH=AG=CD=1.2,DH=CE=0.8,DG=CA=30,
FH=EF-EH=1.7-1.2=0.5.
因为EF∥AB,所以△DHF∽△DGB,
所以=,即=,
解之,得BG=18.75.
所以AB=BG+AG=18.75+1.2=19.95≈20.0.
答:楼高AB约为20.0米.
解析分析:首先过点D作DG⊥AB,分别交AB、EF于点G、H,利用平行线的性质得出BG的长,进而得出AB的长即可.
点评:此题主要考查了相似三角形的应用,熟练掌握平行线分线段成比例的性质是解题关键.