1、求由y=x+1 与y=x^2-1 所围成的几何图形的面积

发布时间:2021-03-09 21:03:08

1、求由y=x+1 与y=x^2-1 所围成的几何图形的面积

网友回答

y=x+1与y=x^2-1 的交点坐标为
y=x+1=x^2-1
解得x=-1或2 y=0或3
即两个交点坐标为(-1,0) (2,3)
y=x+1与y=x^2-1所围面积为
S=(-1,2) ∫[(x+1)-(x^2-1)]dx=9/2
======以下答案可供参考======
供参考答案1:
解方程组得两曲线的交点为(-1,0),(2,3)
由定积分的几何意义可得
S=∫(-1→2)(x+2-x²)dx
=4.5供参考答案2:
x+1-(x^2-1)在[-1,2]上求定积分
结果是9/2
供参考答案3:
微积分呀
以上问题属网友观点,不代表本站立场,仅供参考!