为了美化环境,计划将一个边长为4米的菱形草地ABCD分割成如图所示的四块,其中四边形AEPM和四边形NPFC均为菱形,且∠A=120°,若AE的长为x米,四边形BEP

发布时间:2020-08-09 13:01:24

为了美化环境,计划将一个边长为4米的菱形草地ABCD分割成如图所示的四块,其中四边形AEPM和四边形NPFC均为菱形,且∠A=120°,若AE的长为x米,四边形BEPN和四边形DMPF的面积和为S平方米.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据(1)中的函数关系式,计算当x为何值时S最大,并求出最大值.
[参考公式:二次函数y=ax2+bx+c(a≠0),当x=-时,y最大(小)值=].

网友回答

解:(1)连AC,如图,
∵四边形ABCD为菱形,∠A=120°,
∴∠BAC=60°,
∴△ABC为等边三角形,
∴S菱形ABCD=2S△ABC=2×AB2=8,
同理得到S菱形AEPM=2S△AEP=2×AE2=x2,
S菱形NPFC=2S△NPC=2×PN2=BE=(4-x)2,
故S=S菱形ABCD-S菱形NPFC
=8-x2-(4-x)2
=-x2+4x,
(2)∵a=-<0,
∴S有最大值,
当x=-=2时,S最大值==4.
解析分析:(1)连AC,根据菱形的性质得到∠BAC=60°,则△ABC为等边三角形,利用等边三角形的面积等于可得到边长平方的倍可得到S菱形ABCD=2S△ABC=2×AB2=8,同理得到S菱形AEPM=2S△AEP=2×AE2=x2,S菱形NPFC=2S△NPC=2×PN2=BE=(4-x)2,由S=S菱形ABCD-S菱形NPFC即可得到S=8-x2-(4-x)2,然后化简即可;
(2)利用题中给的公式可计算出当x为何值时S最大以及最大值.

点评:本题考查了二次函数的应用:利用实际问题中的几何关系得到二次函数解析式,然后利用二次函数的性质解决最大(或最小值)问题.
以上问题属网友观点,不代表本站立场,仅供参考!