在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE沿DE折叠在四边形A

发布时间:2020-08-10 23:52:17

在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究:
(1)如图(1)把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和;
(2)如图(2)把△CDE沿DE折叠覆盖∠A,则求∠1+∠2的和;
(3)如图(3)把△CDE沿DE斜向上折叠,探求∠1、∠2、∠C的关系.

网友回答

解:(1)∠1+∠2=180°-2∠CDE+180°-2∠CED
=360°-2(∠CDE+∠CED)
=360°-2(180°-∠C)
=2∠C
=60°;


(2)连接DG,
∠1+∠2=180°-∠C′-(∠ADG+∠AGD)
=180°-30°-(180°-80°)
=50°;


(3)∠2-∠1=180°-2∠CED-(2∠CDE-180°)
=360°-2(∠CDE+∠CED)
=360°-2(180°-∠C)
=2∠C
所以:∠2-∠1=2∠C.
解析分析:(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE,∠2=180°-2∠CED,再根据三角形内角和定理比可求出
以上问题属网友观点,不代表本站立场,仅供参考!