(1)计算:
(2)先化简再求值:3(x2-2xy)-[3x2-2y+2(xy+y)],其中x=-,y=-3
(3)解不等式组,并把解集在数轴上表示出来.
(4)解方程:.
网友回答
解:(1)原式=1+2+2--4=-1+;
(2)3(x2-2xy)-[3x2-2y+2(xy+y)]=3x2-6xy-3x2+2y-2xy-2y=-8xy,
当x=-,y=-3时,原式=-8×(-)×(-3)=-12;
(3),
解不等式①,得x>-3,
解不等式②,得x≥-,
不等式组的解集为x≥-;
(4)设y=,原方程化为y2-y-6=0,
解得y1=3,y2=-2,由=3,解得x=-,由=-2,解得x=,
经检验,x=,x=-都是原方程的解,
所以,原方程的解为x1=,x2=-.
解析分析:(1)根据0指数幂,负整数指数幂,二次根式,绝对值的化简方法计算;
(2)去括号,合并同类项,再代值计算;(3)先解每一个不等式,再求解集的公共部分;
(4)设y=,运用换元法解分式方程.
点评:本题考查了解分式方程、实数的运算、整式的化简求值、解不等式组.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.