一个口袋内装有红、蓝、白三种不同颜色的小球,其中蓝球数至少是白球数的一半,但至多是红球数的,白球与蓝球的总和至少是55个,则红球至少有________个.
网友回答
57
解析分析:设红、蓝、白三种小球的个数分别为x,y,z,根据蓝球数至少是白球数的一半,但至多是红球数的,白球与蓝球的总和至少是55个,得到3个关系式,由第一个关系式可得用字母y表示z的式子,代入第3个不等式可得y的取值,进而可得红球的最小整数解.
解答:设红、蓝、白三种小球的个数分别为x,y,z.则
,
由第一个不等式得z≤2y,
∴y+z≤y+2y=3y
∵y+z≥55,
∴3y≥55,
y≥18,
∴y的最小值是19,
∴x≥3y=57,
∴红球至少有57个.
故