如图,在四边形ABCD中,已知AB=BC=2,CD=3,DA=1,∠B=90°,则∠DAB=________度.
网友回答
135
解析分析:由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,∠CAD=90°,从而易求∠BAD.
解答:∵∠B=90°,AB=BC=2,
∴AC==2,∠BAC=45°,
又∵CD=3,DA=1,
∴AC2+DA2=8+1=9,CD2=9,
∴AC2+DA2=CD2,
∴△ACD是直角三角形,
∴∠CAD=90°,
∴∠BAD=45°+90°=135°.
故