如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(-2,-1),与y轴的交点为C,与x轴的交点为D.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOD的面积.
网友回答
解:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),
∴2m=2,
m=1.
把(1,2)和(-2,-1)代入y=kx+b,得
,
解,得
,
则一次函数解析式是y=x+1;
(2)令x=0,则y=1,即点C(0,1);
(3)令y=0,则x=-1.
则△AOD的面积=×1×2=1.
解析分析:(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;
(2)根据(1)中的解析式,令x=0求得点C的坐标;
(3)根据(1)中的解析式,令y=0求得点D的坐标,从而求得三角形的面积.
点评:此题综合考查了待定系数法求函数解析式、直线与坐标轴的交点的求法.