已知关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,试证明以a、b、c为三边的三角形是直角三角形.

发布时间:2020-08-07 02:15:23

已知关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,试证明以a、b、c为三边的三角形是直角三角形.

网友回答

证明:a(1-x2)+2bx+c(1+x2)=0
去括号,整理为一般形式为:(c-a)x2+2bx+a+c=0,
∵关于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根.
∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,
∴b2+c2-a2=0,即b2+c2=a2.
∴以a、b、c为三边的三角形是直角三角形.
解析分析:先把方程变为一般式:(c-a)x2+2bx+a+c=0,由方程有两个相等的实数根,得到△=0,即△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,则有b2+c2-a2=0,即b2+c2=a2,根据勾股定理的逆定理可以证明以a、b、c为三边的三角形是直角三角形.

点评:本题考查了一元二次方程的根的判别式和勾股定理的逆定理等知识.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
以上问题属网友观点,不代表本站立场,仅供参考!