已知一元二次方程x2-4x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0和x2+mx-1=0有

发布时间:2020-08-10 18:38:52

已知一元二次方程x2-4x+k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0和x2+mx-1=0有一个相同的根,求此时m的值.
(3)是否存在k的值使方程x2-4x+k=0的两根x1、x2满足?若存在,求出k的值;不存在,说明理由.

网友回答

解:(1)∵一元二次方程x2-4x+k=0有两个不相等的实数根,
∴△=(-4)2-4k>0,
∴k<4;

(2)∵k<4,
∴k的最大整数值是3,
∴一元二次方程x2-4x+k=0可化为x2-4x+3=0,
∴x1=3,x2=1,
∵一元二次方程x2-4x+k=0和x2+mx-1=0有一个相同的根,
∴当相同的实数根是3时,
32+3m-1=0,解得m=-;
当相同的实数根是1时,
12+m-1=0,解得m=0.
故m=-或0;

(3)设方程x2-4x+k=0的两根x1、x2,则x1?x2=k;x1+x2=4,
假设x1、x2满足,则=6,即=6,
把x1?x2=k;x1+x2=4代入得,=6,解得k=2,
由(1)可知,k<4,故k=2符合条件,
故存在符合条件的k的值,此时k=2.
解析分析:(1)根据方程有两个不相等的实数根可得出△>0,求出k的取值范围即可;
(2)由(1)中k的取值范围得出k的最大整数解,代入一元二次方程x2-4x+k=0中求出x的值,再根据两方程有一个相同的根即可求出m的值;
(3)根据根与系数的关系得出x1?x2及x1+x2的值,代入所求代数式得出k的值,再看k的值是否满足(1)中k的取值范围即可.

点评:本题考查的是根与系数的关系及根的判别式,在解答此题时要熟知熟知一元二次方程y=ax2+bx+c中,
①当△>0时,方程有两个不相等的两个实数根;
②x1+x2=-,x1x2=.
以上问题属网友观点,不代表本站立场,仅供参考!