如图1,在△ABC中,∠ACB=90,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F,若AB=2如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F,若AB=2.(1)直接写出BC的长;(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
网友回答
(1)证明:①在△ABC中,∠ACB=90°,∠CAB=30°,
∴∠ABC=60°.
在等边△ABD中,∠BAD=60°,
∴∠BAD=∠ABC=60°.
∵E为AB的中点,
∴AE=BE.
又∵∠AEF=∠BEC,
∴△AEF≌△BEC.
②在△ABC中,∠ACB=90°,E为AB的中点,
∴CE=1 2 AB,BE=
1 2 AB.∴CE=AE,
∴∠EAC=∠ECA=30°,
∴∠BCE=∠EBC=60°.
又∵△AEF≌△BEC,
∴∠AFE=∠BCE=60°.
又∵∠D=60°,
∴∠AFE=∠D=60°.
∴FC∥BD.
又∵∠BAD=∠ABC=60°,
∴AD∥BC,即FD∥BC.
∴四边形BCFD是平行四边形.
(2)∵∠BAD=60°,∠CAB=30°,
∴∠CAH=90°.
在Rt△ABC中,∠CAB=30°,设BC=a,
∴AB=2BC=2a.
∴AD=AB=2a.
设AH=x,则HC=HD=AD-AH=2a-x,
在Rt△ABC中,AC2=(2a)2-a2=3a2,
在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a-x)2,
解得x=1 4 a,即AH=
1 4 a.∴HC=2a-x=2a-
1 4 a=7 4 a.∴sin∠ACH=
AH HC =1 4 a 7 4 a =1 7 .