什么是分部积分法,用分部积分公式证明
网友回答
定义微积分中的一类积分办法:对于那些由两个不同函数组成的被积函数,不便于进行换元的组合分成两部份进行积分,其原理是函数四则运算的求导法则的逆用。根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。在不定积分上的应用具体操作如:根据“反对幂三指”先后顺序,前者为u,后者为v(例:被积函数由幂函数和三角函数组成则按口诀先积三角函数(即:按公式∫udv =
uv - ∫vdu + c把幂函数看成U,三角函数看成V,))。原公式: (uv)'=u'v+uv'求导公式 : d(uv)/dx = (du/dx)v +
u(dv/dx) 写成全微分形式就成为 :d(uv) = vdu + udv 移项后,成为:udv = d(uv) -vdu 两边积分得到:∫udv = uv - ∫vdu 例:∫xcosxdx = xsinx - ∫sinxdx从这个例子中,就可以体会出分部积分法的应用。在定积分上的应用与不定积分的分部积分法一样,可得∫b/a u(x)v'(x)dx=[∫u(x)v'(x)dx]b/a=[u(x)v(x) - ∫v(x)u'(x)dx]b/a=[u(x)-v(x)]b/a- ∫b/a v(x)u'(x)dx 简记作 ∫b/a uv'dx=[uv]b/a-∫b/a uv'dx 或∫b/a udv=[uv]b/a-∫b/a
vdu例如∫1/0arcsin xdx=[xarcsinx]1/0-∫1/0
xdarcsinx从这个例子中就可以看到在定积分上是如何应用的。
网友回答
记 g(u) = ∫<0, u>f(x)dx, 将右边二重积分 作分部积分
右边 = [ug(u)]<0, x> - ∫<0, x>ug'(u)du
= xg(x) - ∫<0, x>uf(u)du
= x∫<0, x>f(t)dt - ∫<0, x>uf(u)du, (对 t 积分, x 是常量)
= ∫<0, x>xf(t)dt - ∫<0, x>uf(u)du (定积分与积分变量无关,将 t 换为 u)
∫<0, x>(x-u)f(u)du = 左边