一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.
网友回答
解:连接AE,
在Rt△ABE中,AB=3m,BE=m,
则AE==2m,
又∵tan∠EAB==,
∴∠EAB=30°,
在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,
∴EF=AE×sin∠EAF=2×=3m.
答:木箱端点E距地面AC的高度为3m.
解析分析:连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出