(2乘以4)/2+(4乘以6)/2+(6乘以8)/2+……+(98乘以100)/2
网友回答
数列通项an=2n*(2n+2)/2=2n(n+1)=2n^2+2n=2(n^2+n)
(2乘以4)/2+(4乘以6)/2+(6乘以8)/2+……+(98乘以100)/2
=2[(1^2+1)+(2^2+2)+(3^2+3)+.+(49^2+49)]
=2(1^2+2^2+3^2+.+49^2)+2(1+2+3+.+49)
已知公式:1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6 1+2+3+.+n=n(n+1)/2
原式:S=2*49(49+1)(2*49+1)/6+2*49(49+1)/2
S=83300