若关于x的方程x2+mx+n=0的两根是一个直角三角形的两锐角的正弦值,且m+5n=1,则m,n的值分别为A.-B.-C.D.-

发布时间:2020-08-06 17:27:04

若关于x的方程x2+mx+n=0的两根是一个直角三角形的两锐角的正弦值,且m+5n=1,则m,n的值分别为A.-B.-C.D.-

网友回答

D
解析分析:根据方程两根为一个直角三角形两对角的正弦值,得到两根的平方和等于1,列出两根的关系式,利用根与系数的关系得到m与n的关系式,再由m+5n=1,求出m与n的值即可.

解答:∵方程x2+mx+n=0的两根是一个直角三角形的两锐角的正弦值,设两根为a,b,
∴a2+b2=(a+b)2-2ab=1,a+b=-m,ab=n,m2-4n>0,
∴m2-2n=1,与m+5n=1联立得:,
由②得:m=1-5n③,
③代入①得:1-10n+25n2-2n=1,
整理得:25n2-12n=0,即n(25n-12)=0,
解得:n=0(不合题意,舍去)或n=,
将n=代入③得:m=1-=-.
故选D

点评:此题考查了根的与系数的关系,以及同角三角函数间的基本关系,熟练掌握根与系数的关系是解本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!