已知f(x)=lg(x+1),g(x)=2lg(2x+t)(t∈R,是参数),如果当x∈[0,1]时,f(x)≤g(x)恒成立,则参数t的取值范围是________.
网友回答
t≥1
解析分析:f(x)≤g(x)恒成立等价于x∈[0,1]时,有 即 恒成立,解出t要大于一个函数的最大值即可得到t的范围.
解答:由题意可知x∈[0,1]时,f(x)≤g(x)恒成立等价于x∈[0,1]时,有
即 恒成立
故x∈[0,1]时,恒成立,于是问题转化为求函数 x∈[0,1]的最大值,令 ,则x=μ2-1,.
而 =在 上是减函数,
故当μ=1即x=0时,有最大值1,所以t的取值范围是t≥1.
故