若△ABC的三边之比为3:4:5,与其相似的△A′B′C′的周长为36cm,则△A′B′C′的面积为________cm2.

发布时间:2020-08-05 04:16:54

若△ABC的三边之比为3:4:5,与其相似的△A′B′C′的周长为36cm,则△A′B′C′的面积为________cm2.

网友回答

54

解析分析:由于相似三角形的对应边成比例,所以△A′B′C′的三边比也是3:4:5;可根据△A′B′C′的周长求出它的三边的长;根据勾股定理易知:两三角形均为直角三角形,因此根据直角三角形的面积公式即可求出△A′B′C′的面积.


解答:由△ABC的三边之比为3:4:5,可知△ABC为直角三角形,
所以△A′B′C′为直角三角形,设△A′B′C′的三边长分别为3xcm,4xcm,5xcm,
由△A′B′C′的周长为36cm,得:3x+4x+5x=36,
∴x=3(cm),∴3x=9(cm),4x=12(cm),
∴S△A′B′C′=×9×12=54(cm2).
即:△A′B′C′的面积为54cm2.


点评:本题考查对相似三角形性质的理解,相似三角形的对应边的比相等,确定△ABC是直角三角形是解决本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!