已知|y|≤1且2x+y=1,则2x2+16x+3y2的最小值为________.
网友回答
3
解析分析:由2x+y=1,|y|≤1,得到y=1-2x,-1≤1-2x≤1,解得0≤x≤1,设W=2x2+16x+3y2,用x表示W得到W=14x2+4x+3,先求出对称轴为直线x=-=-,由于a=14>0得到抛物线开口向上,在对称轴右侧,y随x的增大而增大,而0≤x≤1,所以当x=0时W最小,然后把x=0代入W进行计算即可.
解答:设W=2x2+16x+3y2,
∵2x+y=1,|y|≤1,
∴y=1-2x,-1≤y≤1,
∴-1≤1-2x≤1,
∴0≤x≤1,
∴W=2x2+16x+3(1-2x)2
=14x2+4x+3,
对称轴为直线x=-=-,
∵a=14>0,
∴抛物线开口向上,在对称轴右侧,y随x的增大而增大,
当0≤x≤1,x=0时,W最小,
即W的最小值=3.
故