如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8m,∠A=30°,则DE=________m.
网友回答
2
解析分析:由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.
解答:如右图所示,
∵立柱BC、DE垂直于横梁AC,
∴BC∥DE,
∵D是AB中点,
∴AD=BD,
∴AE:CE=AD:BD,
∴AE=CE,
∴DE是△ABC的中位线,
∴DE=BC,
在Rt△ABC中,BC=AB=4,
∴DE=2.
故