如图,AB是半圆O的直径,点C是⊙O上一点(不与A,B重合),连接AC,BC,过点O作OD∥AC交BC于点D,在OD的延长线上取一点E,连接EB,使∠OEB=∠ABC.
(1)试判断直线BE与⊙O的位置关系;并说明理由.
(2)若OA=10,BC=16,求BE的长.
网友回答
解:(1)BE与⊙O的相切,
理由是:∵AB是半圆O的直径,
∴∠ACB=90°
∵OD∥AC,
∴∠ODB=∠ACB=90°,
∴∠BOD+∠ABC=90°,
又∵∠OEB=∠ABC,
∴∠BOD+∠OEB=90°,
∴∠OBE=90°,
∵AB是半圆O的直径,
∴BE是⊙O的切线;
(2)∵在Rt△ACB中,AB=2OA=20,BC=16,
∴由勾股定理得:AC===12,
∴tanA===,
∠BOE=∠A,
∴tan∠BOE==,
∴BE=OE=×10=13.
解析分析:(1)根据圆周角定理求出∠ACB=90°根据平行线性质得出∠ODB=∠ACB=90°,求出∠BOD+∠OEB=90°,即∠OBE=90°,根据切线的判定推出即可;
(2)根据勾股定理求出AC,根据解直角三角形求出tanA==tan∠BOE,根据tan∠BOE==,求出BE即可.
点评:本题考查了圆周角定理,勾股定理,解直角三角形,切线的判定,平行线性质等知识点的综合运用,主要考查学生推理能力.