如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是________.
网友回答
16 64×()n-1
解析分析:根据E、F、G分别为AB、AC、BC的中点,可以判断EF、FG、EG为三角形中位线,利用中位线定理求出EF、FG、EG与BC、AB、CA的长度关系即可求得△EFG的周长是△ABC周长的一半,△A′B′C′的周长是△EFG的周长的一半,以此类推,可以求得第n个三角形的周长.
解答:∵如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,
∴EF、FG、EG为三角形中位线,
∴EF=BC,EG=AC,FG=AB,
∴EF+FG+EG=(BC+AC+AB),即△EFG的周长是△ABC周长的一半.
同理,△A′B′C′的周长是△EFG的周长的一半,即△A′B′C′的周长为×64=16.
以此类推,第n个小三角形的周长是第一个三角形周长的64×()n-1.
故