如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.求证:(1)直线DE是⊙O的切线;(2)△ACD∽△CB

发布时间:2020-08-05 07:00:51

如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.
求证:
(1)直线DE是⊙O的切线;
(2)△ACD∽△CBD.

网友回答

证明:(1)在△OCD和△OCE中,
∵,
∴△OCD≌△OCE(SSS),
∴∠OCD=∠OCE,
又∵∠OCD+∠OCE=180°,
∴∠OCD=∠OCE=90°,
则DE是圆O的切线;

(2)∵DE为圆O的切线,
∴∠ACD=∠B(弦切角等于夹弧所对的圆周角),
又∵∠D=∠D,
∴△ACD∽△CBD.
解析分析:(1)由OE=OD,EC=DC,且OC为公共边,利用SSS得出三角形OCD与三角形OCE全等,由全等三角形的对应角相等得到一对角相等,由这两角互为邻补角,得到每一个角都为直角,即OC垂直于DE,可得出DE为圆O的切线;
(2)由弦切角等于夹弧所对的圆周角得到一对角相等,再由一对公共角,利用两对对应角相等的两三角形相似即可得证.

点评:此题考查了切线的判定,全等三角形的判定与性质,圆周角定理,以及相似三角形的判定,切线的判定方法有两种:有点连接证明垂直;无点作垂线证明垂线段等于圆的半径.
以上问题属网友观点,不代表本站立场,仅供参考!