某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品50件.生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产

发布时间:2020-08-08 02:21:14

某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品50件.生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.
(1)设生产x件A种产品,写出其题意x应满足的不等式组;
(2)由题意有哪几种按要求安排A、B两种产品的生产件数的生产方案?请您帮助设计出来.

网友回答

解:(1)设生产x件A种产品,则生产B产品(50-x)件,共需要甲种原料[9x+4(50-x)]千克,乙种原料[3x+10(50-x)]千克,由题意,得


(2)∵,
解得:30≤x≤32,
∴x为整数,
∴x=30,31,32,
∴有3种生产方案:
方案1,A产品30件,B产品20件,
方案2,A产品31件,B产品19件,
方案1,A产品32件,B产品18件,
解析分析:(1)设生产x件A种产品,则生产B产品(50-x)件,共需要甲种原料[9x+4(50-x)]千克,乙种原料[3x+10(50-x)]千克,根据题意就可以建立不等式组;
(2)求出(1)的不等式组的解集,就可以确定x的值,从而求出生产方案.

点评:本题是一道方案设计题型,考查了列一元一次不等式组解实际问题的运用及一元一次不等式组的解法的运用,解答时找到题意中的不相等关系是建立不等式组的关键.
以上问题属网友观点,不代表本站立场,仅供参考!