已知一次函数y=2x-1和反比例函数y=,其中一次函数的图象经过(m,n),(m+1,n+k)两点.
(1)求反比例函数的解析式;
(2)如图,点A是上述两个函数的一个交点,且在第一象限内,求点A的坐标;
(3)利用(2)的结果,在x轴上是否在点P,使△AOP为等腰三角形?若存在,请求出符合条件的P点坐标;若不存在,请说明理由.
网友回答
解:(1)由题意得
②-①得:k=2
∴反比例函数的解析式为y=.
(2)由,
解得,,.
∵点A在第一象限,
∴点A的坐标为(1,1)
(3)OA==,OA与x轴所夹锐角为45°,
①当OA为腰时,由OA=OP1得P1(,0),
由OA=OP2得P2(-,0);
由OA=AP3得P3(2,0).
②当OA为底时,OP4=AP4得P4(1,0).
∴符合条件的点有4个,分别是(,0),(-,0),(2,0),(1,0).
解析分析:(1)把过一次函数的两个点代入一次函数,即可求得k,进而求得反比例函数的解析式.
(2)同时在这两个函数解析式上,让这两个函数组成方程组求解即可.
(3)应先求出OA的距离,然后根据:OA=OP,OA=AP,OP=AP,分情况讨论解决.
点评:本题考查了反比例函数的综合应用,利用在这条直线上的各点的坐标一定适合这条直线的解析式.同时在两个函数解析式上,应是这两个函数解析式的公共解.