如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.
证明:BE=CF;(提示:连接线段BD、CD)
网友回答
证明:连接BD,CD,
∵AD平分∠BAC,且DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
∵DG⊥BC且平分BC,
∴BD=CD,
在Rt△BED与Rt△CFD中,,
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF.
解析分析:连接BD、CD,根据角平分线上的点到角的两边的距离相等可得DE=DF,再根据线段垂直平分线上的点到线段两端点的距离相等可得BD=CD,然后利用“HL”证明Rt△BED与Rt△CFD全等,根据全等三角形对应边相等即可得证.
点评:本题考查了角平分线上的点到角的两边的距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.