如图,PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,若∠P=40°,则∠PAE+∠PBE的度数为A.50°B.62°C.66°D.70°
网友回答
D
解析分析:由PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,根据切线长定理即可得:CE=CA,DE=DB,然后由等边对等角与三角形外角的性质,可求得∠PAE=∠PCD,∠PBE=∠PDC,继而求得∠PAE+∠PBE的度数.
解答:∵PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,∴CE=CA,DE=DB,∴∠CAE=∠CEA,∠DEB=∠DBE,∴∠PCD=∠CAE+∠CEA=2∠CAE,∠PDC=∠DEB+∠DBE=2∠DBE,∴∠CAE=∠PCD,∠DBE=∠PDC,即∠PAE=∠PCD,∠PBE=∠PDC,∵∠P=40°,∴∠PAE+∠PBE=∠PCD+∠PDC=(∠PCD+∠PDC)=(180°-∠P)=70°.故选D.
点评:此题考查了切线长定理、等腰三角形的性质、三角形外角的性质以及三角形内角和定理.此题难度适中,注意掌握数形结合思想的应用.