如图1,在等腰梯形ABCD中,AB∥DC,AD=BC=4cm,AB=12cm,CD=8cm点P从A开始沿AB边向B以3cm/s的速度移动,点Q从C开始沿CD边向D以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD是平行四边形?
(2)如图2,如果⊙P和⊙Q的半径都是2cm,那么,t为何值时,⊙P和⊙Q外切?
网友回答
解:(1)∵DQ∥AP,
∴当AP=DQ时,四边形APQD是平行四边形.此时,3t=8-t.解得t=2(s).即当t为2s时,四边形APQD是平行四边形.
(2)∵⊙P和⊙Q的半径都是2cm,
∴当PQ=4cm时,⊙P和⊙Q外切.而当PQ=4cm时,如果PQ∥AD,那么四边形APQD是平行四边形.
①当四边形APQD是平行四边形时,由(1)得t=2(s).
②当四边形APQD是等腰梯形时,∠A=∠APQ.
∵在等腰梯形ABCD中,∠A=∠B,
∴∠APQ=∠B.
∴PQ∥BC.
∴四边形PBCQ平行四边形.此时,CQ=PB.
∴t=12-3t.解得t=3(s).
综上,当t为2s或3s时,⊙P和⊙Q相切.
解析分析:(1)表面问四边形APQD是平等四边形,实质为AP=DQ.容易得AP=3t,DQ=8-t,列方程3t=8-t即解;
(2)关键理解:什么情况下⊙P和⊙Q外切?⊙P和⊙Q外切就是PQ=AD根据题意有两种可能:?APQD、等腰梯形APQD.?APQD就是AP=DQ等腰梯形APQD就是PB=CQ.分别列方程可解
点评:此题考查平行四边形性质及等腰梯形性质的理解及运用.