如图,在平行四边形ABCD中,AB>CD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两

发布时间:2020-08-11 08:34:19

如图,在平行四边形ABCD中,AB>CD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:
①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四边形ABCH.
其中正确的有A.①②③B.①③④C.②④D.①③

网友回答

D
解析分析:根据作图过程可得得AG平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,从而得到△ADH是等腰三角形.

解答:根据作图的方法可得AG平分∠DAB,
故①正确;
∵AG平分∠DAB,
∴∠DAH=∠BAH,
∵CD∥AB,
∴∠DHA=∠BAH,
∴∠DAH=∠DHA,
∴AD=DH,
∴△ADH是等腰三角形,
故③正确;
故选:D.

点评:此题主要考查了平行四边形的性质,以及角平分线的做法,关键是掌握平行四边形对边平行.
以上问题属网友观点,不代表本站立场,仅供参考!