有一个二次函数的图象,三位同学分别说出了它的一些特征:甲:对称轴是x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角

发布时间:2020-08-06 18:11:47

有一个二次函数的图象,三位同学分别说出了它的一些特征:甲:对称轴是x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请写出满足上述全部特征的一个二次函数的解析式.

网友回答

解:如图所示:令A点坐标为(3,0),
∵对称轴是x=4,
∴B点坐标为(5,0).
又∵△ABC的面积为3,
∴×AB×OC=3,即(5-3)OC=3,解得OC=3,
∴C点纵坐标为3,是整数,符合题意.
设二次函数解析式为y=a(x-3)(x-5),把C(0,3)代入解析式得,3=a(0-3)(0-5),
解得,a=,
∴函数解析式为y=(x-3)(x-5),即y=x2-x+3.
以上问题属网友观点,不代表本站立场,仅供参考!