阅读材料:学习了无理数后,某数学兴趣小组开展了一次探究活动:估算的近似值.小明的方法:∵<<,设=3+k(0<k<1).∴.∴13=9+6k+k2.∴13≈9+6k.

发布时间:2020-08-07 22:18:47

阅读材料:
学习了无理数后,某数学兴趣小组开展了一次探究活动:估算的近似值.
小明的方法:
∵<<,
设=3+k(0<k<1).
∴.
∴13=9+6k+k2.
∴13≈9+6k.
解得?k≈.
∴≈3+≈3.67.
问题:
(1)请你依照小明的方法,估算的近似值;
(2)请结合上述具体实例,概括出估算的公式:已知非负整数a、b、m,若a<<a+1,且m=a2+b,则≈______(用含a、b的代数式表示);
(3)请用(2)中的结论估算的近似值.

网友回答

解:(1)∵<<,
设=6+k(0<k<1),
∴,
∴41=36+12k+k2,
∴41≈36+12k.
解得k≈,
∴≈6+≈6+0.42=6.42;

(2)设=a+k(0<k<1),
∴m=a2+2ak+k2≈a2+2ak,
∵m=a2+b,
∴a2+2ak=a2+b,
解得k=,
∴≈a+;

(3)≈6+≈6.08.
解析分析:(1)根据题目信息,找出41前后的两个平方数,从而确定出=6+k(0<k<1),再根据题目信息近似求解即可;
(2)根据题目提供的求法,先求出k值,然后再加上a即可;
(3)把a换成6,b换成1代入公式进行计算即可得解.

点评:本题考查了无理数的估算,读懂题目提供信息,然后根据信息中的方法改变数据即可,难度不大,很有趣味性.
以上问题属网友观点,不代表本站立场,仅供参考!