如图所示,一光滑的半径为R的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道的压力恰好为零,则小球落地点C距A处多远?

发布时间:2020-08-06 15:14:23

如图所示,一光滑的半径为R的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道的压力恰好为零,则小球落地点C距A处多远?

网友回答

解:(1)、设小球在B点速度为VB,轨道的压力恰好为零,只有重力提供向心力,
由牛顿第二定得:?? ①
再设小球在B运动到点C的时间为t,点C与A的距离为X,由平抛运动规律得:
X=vBt??????? ②
???? ③
联立以上三式 解得X=2R
答:小球落地点C距A处2R.
解析分析:当小球将要从轨道口飞出时,轨道的压力恰好为零,小球做圆周运动,只有重力提供向心力,因此求出这时小球的速度,小球以此速度做平抛运动,由B到C由平抛运动规律求C到A的距离.

点评:解答此题关键是分析小球的运动过程,明确小球分别在B的受力,选用牛顿第二定律求解B点速度,然后利用平抛运动规律可求小球落地点C到A的距离.
以上问题属网友观点,不代表本站立场,仅供参考!