钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A,B的距离,如图2,我勘测飞机在距海平面垂直高度为1公里的点C处,测得端点A的俯角为45°,然后沿着平行于AB的方向飞行3.2公里到点D,并测得端点B的俯角为37°,求钓鱼岛两端AB的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41)
网友回答
解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.
∵AB∥CD,
∴∠AEF=∠EFB=∠ABF=90°,
∴四边形ABFE为矩形,
∴AB=EF,AE=BF=1公里,
在Rt△AEC中,∠C=45°,AE=1公里.
∴CE=AE=1(公里).
在Rt△BFD中,∠BDF=37°,BF=1公里,
∴DF=≈1.33公里,
∴AB=EF=CD+DF-CE≈3.2+1.33-1=3.53≈3.5(公里).
答:钓鱼岛两端AB的距离约为3.5公里.
解析分析:首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,易得四边形ABFE为矩形,根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=1公里,CD=3.2公里,然后分别在Rt△AEC与Rt△BFD中,利用三角函数即可求得CE与DF的长,继而求得钓鱼岛两端AB的距离.
点评:此题考查了俯角的定义、解直角三角形与矩形的性质,注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.