已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=-.下列结论中:①abc>0;②a+b=0;③2b+c>0;④4a+c<2b.正确的有______

发布时间:2020-08-08 06:34:43

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=-.下列结论中:
①abc>0;②a+b=0;③2b+c>0;④4a+c<2b.
正确的有________(只要求填写正确命题的序号)

网友回答


解析分析:由二次函数的性质,即可确定a,b,c的符号,即可判定①是错误的;又由对称轴为x=-,即可求得a=b>0,即可判定②是错误的;由当x=1时,a+b+c<0,即可判定③错误;然后由抛物线与x轴交点坐标的特点,判定④正确.

解答:①∵开口向上,∴a>0,
∵抛物线与y轴交于负半轴,∴c<0,
∵对称轴在y轴左侧,∴x=-<0,∴b>0,
∴abc<0,故①错误;
②∵对称轴:x=-=-,∴a=b>0,
∴a+b>0,故②错误;
③当x=1时,a+b+c=2b+c<0,故③错误;
④∵对称轴为x=-,与x轴的一个交点的取值范围为x1>1,
∴与x轴的另一个交点的取值范围为x2<-2,
∴当x=-2时,4a-2b+c<0,
即4a+c<2b,故④正确.
以上问题属网友观点,不代表本站立场,仅供参考!