已知函数f(x)=x2+ax,且对任意的实数x都有f(1+x)=f(1-x)成立.(1)求实数a的值

发布时间:2021-03-15 05:01:01

已知函数f(x)=x2+ax,且对任意的实数x都有f(1+x)=f(1-x)成立.(1)求实数a的值;(2)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数.

网友回答

(1)由f(1+x)=f(1-x)得,
(1+x)2+a(1+x)=(1-x)2+a(1-x),
整理得:(a+2)x=0,
由于对任意的x都成立,∴a=-2.
(2)根据(1)可知f(x)=x2-2x,下面证明函数f(x)在区间[1,+∞)上是增函数.
设x1>x2≥1,则f(x1)-f(x2)=(x12-2x1)-(x22-2x2)
=(x12-x22)-2(x1-x2)
=(x1-x2)(x1+x2-2)
∵x1>x2≥1,则x1-x2>0,且x1+x2-2>2-2=0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
故函数f(x)在区间[1,+∞)上是增函数.
======以下答案可供参考======
供参考答案1:
已知二次函数f(x)=x2+ax且对任意的实数x都有f(1+x)=f(1-x)成立
第一种解法:说明函数关于x=1对称。则-a/2=1,所以a=-2
第二种解法:直接计算(1+X)^2+a(1+x)=(1-X)^2+a(1-x)
可以得到a=-2
知道了函数的解析式,然后用单调性的定义证明应该不是难题。按基本格式走就可以。这个你可以推到出来。
供参考答案2:
(1) 这是一个对称函数,f(x)关于x=1对称,
f(x)=(x+a/2)^2-a^2/4
所以-a/2=1
a=-2(2) 由于二次函数f(x)的开口向上,对称抽为x=1,所以在(1,+x)范围内是增函数。。。
以上问题属网友观点,不代表本站立场,仅供参考!