如图,△ABC中,AB=AC,D是AB上的一点,F是AC延长线上一点,连DF交BC于E,若DB=CF,求证:DE=EF.
网友回答
证明:作FH∥AB交BC延长线于H,
∵FH∥AB,
∴∠FHC=∠B.
又∵AB=AC,
∴∠B=∠ACB.
又∠ACB=∠FCH,
∴∠FHE=∠FCH.
∴CF=HF.
又∵BD=CF,
∴HF=BD.
又∵FH∥AB,
∴∠BDE=∠HFE,∠DBE=∠FHE.
∴△DBE≌△FHE(ASA).
∴DE=EF.
解析分析:作FH∥AB交BC延长线于H,构造全等三角形:△DBE和△FHE,由平行线得出两对内错角相等,只需要再证一组边对应相等,根据已知条件,以及所作平行线,可证出HF=BD,三角形全等可证.
点评:本题考查了全等三角形的判定和性质;主要是作辅助线,利用了等边对等角,等角对等边,还有全等三角形的判定和性质.正确作出辅助线是解决本题的关键.