已知:tan(α+8π/7)=a则:[sin(α+15π/7)+3cos(α-13π/7)]/[si

发布时间:2021-02-26 23:14:15

已知:tan(α+8π/7)=a则:[sin(α+15π/7)+3cos(α-13π/7)]/[sin(-α+2π/7)-cos(α+22π/7)]=要详细过程

网友回答

x=α+8π/7,则有:tanx=a
∴15π/7+α=π+(α+8π/7)=π+x
α-13π/7=(α+8π/7)-3π=x-3π
20π/7-α=4π-(α+8π/7)=4π-x
α+22π/7=(α+8π/7)+2π=x+2π
于是,原所求证等式左侧:
左侧=[sin(π+x)+3cos(x-3π)]/[sin(4π-x)-cos(x+2π)]
=(-sinx-3cosx)/(-sinx-cosx)
=(sinx+3cosx)/(sinx+cosx)
=[(sinx+3cosx)/cosx]/[(sinx+cosx)/cosx]
=(tanx+3)/(tanx+1)
=(a+3)/(a+1)
======以下答案可供参考======
供参考答案1:
以上问题属网友观点,不代表本站立场,仅供参考!