已知a+a分之1=3,求(a的4次方+a的2次方+1)分之a的2次方!已知x=(b+c)分之a,y=(c+a)分之b,z=(a+b)分之c,求(1+x)分之x + (1+y)分之y + (1+z)分之z!已知x+(y分之9)=3,y+(z分之9)=3,探究z+(x分之9)=3是否成立,并说明理由!
网友回答
a+1/a=3
(a+1/a)^2=a^2+2+1/a^2=9
a^2+1/a^2=7
a^2/(a^4+a^2+1)
=1/(a^2+1+1/a^2)
=1/(7+1)
=1/8x=a/(b+c),y=b/(c+a),z=c/(a+b)
1/x=(b+c)/a
1+1/x=(a+b+c)/a
(1+x)/x=1+1/x=(a+b+c)/a
x/(1+x)=a/(a+b+c)
同理y/(1+y)=b/(a+b+c)
z/(1+z)=c/(a+b+c)
x/(1+x)+y/(1+y)+z/(1+z)=(a+b+c)/(a+b+c)=1
x+9/y=3,y+9/z=3
9/y=3-x
y=9/(3-x)
代入y+9/z=3
9/(3-x)+9/z=3
3/(3-x)+3/z=1
3/(3-x)=1-3/z=(z-3)/z
(3-x)/3=z/(z-3)
1-x/3=z/(z-3)
x/3=1-z/(z-3)=(z-3-z)/(z-3)=-3/(z-3)
x=-9/(z-3)
1/x=-(z-3)/9
9/x=-z+3
z+9/x=3
======以下答案可供参考======
供参考答案1:
a+1/a=3
a^2+2+1/a^2=9
a^2+1/a^2=7
(a的4次方+a的2次方+1)分之a的2次方=1/(a^2+1+1/a^2)
=1/8(1+x)分之x=a/(a+b+c)
(1+y)分之y=b/(a+b+c)
(1+z)分之z=c/(a+b+c)
(1+x)分之x + (1+y)分之y + (1+z)分之z
=1z+(x分之9)=3成立
x+9/y=3
y=9/(3-x)
y+9/z=39/(x-3)+9/z=3整理得z+9/x=3
供参考答案2:a+1/a=3
(a+1/a)^2=9a^2+2+1/a^2=9
a^2+1+1/a^2=8原式=a^2+1+1/a^2把a^2+1+1/a^2=8代入a^2+1+1/a^2=8