我们知道,“直角三角形斜边上的高线将三角形分成两个与原三角形相似的直角三角形”用这一方法,将矩形ABCD分割成大小不同的七个相似直角三角形.按从大到小的顺序编号为①至

发布时间:2020-08-07 21:21:56

我们知道,“直角三角形斜边上的高线将三角形分成两个与原三角形相似的直角三角形”用这一方法,将矩形ABCD分割成大小不同的七个相似直角三角形.按从大到小的顺序编号为①至⑦(如图),从而割成一副“三角七巧板”.已知线段AB=1,∠BAC=θ.
(1)请用θ的三角函数表示线段BE的长______;
(2)图中与线段BE相等的线段是______;
(3)仔细观察图形,求出⑦中最短的直角边DH的长.(用θ的三角函数表示)

网友回答

解:(1)∵sinθ=,AB=1,
∴BE=sinθ.

(2)∵AB=CD,∠BAC=∠ACD=θ,
∴DF也应该是sinθ,
∴BE=DF.

(3)解:由(1)(2)知DF=BE=sinθ,
由题意得Rt△DFG∽Rt△CAB,
∴∠DFG=∠CAB=θ.
在Rt△DFG中,
∵sin∠DFG=,DF=sinθ,
∴DG=sin2θ.
∵Rt△DGH∽Rt△DFG,
∴∠DGH=∠DFG=θ.
在Rt△DGH中,
sin∠DGH=,DG=sin2θ,
∴DH=sin3θ.
解析分析:(1)可在直角三角形ABE中,用AB的长和正弦函数来求出BE.
(2)应该是DF,因为矩形ABCD中,AB=CD,∠BAC=∠ACD=θ,那么DF也应该是sinθ,因此BE=DF.(也可用全等来证明)
(3)由于这些三角形都相似,那么∠DFG=∠DGH=∠ACD=θ,那么可先在直角三角形FGD中,用FG和正弦函数求出GD,然后在直角三角形GHD中,用DG和正弦函数求出DH.

点评:本题主要考查了相似三角形的性质和解直角三角形的综合应用,根据已知和所求的条件正确的选用三角函数是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!