实数a、b在数轴上的对应点的位置如图所示,化简的结果等于A.a+bB.b-aC.a-bD.b-2a-1

发布时间:2020-08-08 15:40:34

实数a、b在数轴上的对应点的位置如图所示,化简的结果等于A.a+bB.b-aC.a-bD.b-2a-1

网友回答

A
解析分析:首先根据数轴确定a,b的符号,然后根据二次根式的性质即可进行化简.

解答:∵根据数轴可以得到:a<-1<1<b<2,
∴b-1>0,a+1<0,
∴原式=b-1+(a+1)
=b-1+a+1
=a+b.
故选A.

点评:考查了二次根式的性质与化简,解答此题,要弄清以下问题:
①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).
②性质:=|a|.
以上问题属网友观点,不代表本站立场,仅供参考!