如图,抛物线y=ax2+bx+c的对称轴是x=,小亮通过观察得出了下面四条信息:①c<0,②abc<0,③a-b+c>0,④2a-3b=0.你认为其中正确的有________.(填序号)
网友回答
①③
解析分析:利用二次函数的图形和性质,结合抛物线的开口方向,对称轴,以及抛物线与坐标轴的交点对每个命题进行判断.
解答:当x=0时,y=c,因为抛物线与y轴的交点在y轴的负半轴,所以c<0,故①正确.
∵抛物线的开口向上,
∴a>0.
∵对称轴x=-=,
∴b=-<0.
∴abc>0.故②错误.
当x=-1时,y=a-b+c,由图形可知:a-b+c>0,故③正确.
由对称轴得:-=,
∴2a+3b=0.而不是2a-3b=0,故④错误.
故