如图中的△ABC,∠A=39°,∠ABC的外角三等分线是BD,BE;∠ACB的外角三等分线是CF,CG.其中BE,CG的反向延长线交于H,则∠BHC的度数是________.
网友回答
107°
解析分析:根据三角形的内角和为180°得到∠ABC+∠ACB=180°-39°=141°,再利用邻补角的定义得3∠1=180°-∠ABC,3∠3=180°-∠ACB,则可得到∠1+∠3=73°,根据对顶角相等得∠1=∠2,∠3=∠4,然后再根据三角形的内角定理即可得到∠BHC的度数.
解答:解:如图,
∵∠A=39°,
∴∠ABC+∠ACB=180°-39°=141°,
又∵∠ABC的外角三等分线是BD,BE;∠ACB的外角三等分线是CF,CG,
∴3∠1=180°-∠ABC,3∠3=180°-∠ACB,
∴3∠1+3∠3=360°-(∠ABC+∠ACB)=360°-141°=219°,
∴∠1+∠3=73°,
又∵∠1=∠2,∠3=∠4,
而∠BHC=180°-(∠2+∠4),
∴∠BHC=180°-(∠1+∠3)=180°-73°=107°.
故