如图,Rt△ABC和Rt△DEF中,∠ACB=∠DFE=90°,F为AB的中点,DF与AC交于点G,EF与BC交于点H,则AG、BH、GH满足的等量关系为______

发布时间:2020-08-09 10:40:19

如图,Rt△ABC和Rt△DEF中,∠ACB=∠DFE=90°,F为AB的中点,DF与AC交于点G,EF与BC交于点H,则AG、BH、GH满足的等量关系为________.

网友回答

GH2=AG2+BH2
解析分析:延长HF到M,使MF=HF,连接AM、GM,利用“边角边”证明△AMF和△BHF全等,根据全等三角形对应边相等可得AM=BH,∠MAF=∠B,然后求出∠CAM=90°再根据线段垂直平分线上的点到线段两端点的距离相等可得GH=GM,然后利用勾股定理列式即可.

解答:解:如图,延长HF到M,使MF=HF,连接AM、GM,
∵F为AB的中点,
∴AF=BF,
在△AMF和△BHF中,

∴△AMF≌△BHF(SAS),
∴AM=BH,∠MAF=∠B,
在Rt△ABC中,∠CAB+∠B=90°,
∴∠CAM=∠CAB+∠MAF=90°,
又∵∠DFE=90°,MF=HF,
∴GH=GM,
在Rt△AGM中,GM2=AG2+AM2,
∴GH2=AG2+BH2.
以上问题属网友观点,不代表本站立场,仅供参考!