已知如图所示,A,B,C是⊙O上三点,∠AOB=120°,C是的中点,试判断四边形OACB形状,并说明理由.

发布时间:2020-08-11 14:23:32

已知如图所示,A,B,C是⊙O上三点,∠AOB=120°,C是的中点,试判断四边形OACB形状,并说明理由.

网友回答

解:AOBC是菱形.
证明:连OC
∵C是的中点
∴∠AOC=∠BOC=×120°=60°
∵CO=BO(⊙O的半径),
∴△OBC是等边三角形
∴OB=BC
同理△OCA是等边三角形
∴OA=AC
又∵OA=OB
∴OA=AC=BC=BO
∴AOBC是菱形.
解析分析:连接OC,根据等边三角形的判定及圆周角定理进行分析即可.

点评:本题利用了等边三角形的判定和性质,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
以上问题属网友观点,不代表本站立场,仅供参考!