已知:如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明成立(不要求考生证明).
若将图中的垂线改为斜交,如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD于点F,则:
(1)还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(2)请找出S△ABD,S△BED和S△BDC间的关系式,并给出证明.
网友回答
(1)成立.
证明:∵AB∥EF
∴
∵CD∥EF
∴
∴=
∴;
(2)关系式为:
证明如下:分别过A作AM⊥BD于M,过E作EN⊥BD于N,过C作CK⊥BD交BD的延长线于K
由题设可得:
∴=
即=
又∵?BD?AM=S△ABD,=S△BCD
∴BD?EN=S△BED
∴.
解析分析:(1)由题意知,两直线平行是很关键的条件,要根据三角形平行线分线段成比例,找出关系,然后相加就得到结果;
(2)要用到第一问的结论,作出各个三角形的高,再把各面积用边表示出来,即可找到关系.
点评:此题考查平行线分线段成比例定理的运用.