若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴

发布时间:2020-07-30 09:14:45

若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)

网友回答

C
解析分析:A根据二次函数二次项的系数的正负确定抛物线的开口方向.B利用x=-可以求出抛物线的对称轴.C利用顶点坐标和抛物线的开口方向确定抛物线的最大值或最小值.D当y=0时求出抛物线与x轴的交点坐标.

解答:∵抛物线过点(0,-3),∴抛物线的解析式为:y=x2-2x-3.A、抛物线的二次项系数为1>0,抛物线的开口向上,正确.B、根据抛物线的对称轴x=-=-=1,正确.C、由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为-4,而不是最大值.故本选项错误.D、当y=0时,有x2-2x-3=0,解得:x1=-1,x2=3,抛物线与x轴的交点坐标为(-1,0),(3,0).正确.故选C.

点评:本题考查的是二次函数的性质,根据a的正负确定抛物线的开口方向,利用顶点坐标公式求出抛物线的对称轴和顶点坐标,确定抛物线的最大值或最小值,当y=0时求出抛物线与x轴的交点坐标.
以上问题属网友观点,不代表本站立场,仅供参考!