如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
网友回答
解:设EC=x,
在Rt△BCE中,tan∠EBC=,
则BE==x,
在Rt△ACE中,tan∠EAC=,
则AE==x,
∵AB+BE=AE,
∴300+x=x,
解得:x=1800,
胡可的山高CD=DE-EC=3700-1800=1900(米).
答:这座山的高度是1900米.
解析分析:设EC=x,则在RT△BCE中,可表示出BE,在Rt△ACE中,可表示出AE,继而根据AB+BE=AE,可得出方程,解出即可得出