如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C为圆心,R为半径所作的圆与斜边AB有两个交点,则R的取值范围是________.

发布时间:2020-08-10 21:41:10

如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C为圆心,R为半径所作的圆与斜边AB有两个交点,则R的取值范围是________.

网友回答

2.4<R≤3
解析分析:要使圆与斜边AB有两个交点,则应满足直线和圆相交,且半径不大于AC.要保证相交,只需求得相切时,圆心到斜边的距离,即斜边上的高即可.

解答:解:如图,
∵BC>AC,
∴以C为圆心,R为半径所作的圆与斜边AB有两个交点,则圆的半径应大于CD,小于或等于AC,
由勾股定理知,AB==5.
∵S△ABC=AC?BC=CD?AB=×3×4=×5?CD,
∴CD=2.4,
即R的取值范围是2.4<R≤3.

点评:本题利用了勾股定理和垂线段最短的定理,以及直角三角形的面积公式求解.
特别注意:圆与斜边有两个交点,即两个交点都应在斜边上.
以上问题属网友观点,不代表本站立场,仅供参考!