如图,△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD平分线上一点,EB=EC过点E作EF⊥AC于F,EG⊥AD于G.
(1)请你在不添加辅助线的情况下找出一对你认为全等的三角形,并加以证明;
(2)若AB=3,AC=5,求AF的长.
网友回答
解:(1)△EGA≌△EFA(或△EGB≌△EFC).
证明:∵AE平分∠CAD,
∴∠EAG=∠EAF.
又∵EF⊥AC,EG⊥AD,
∴∠EGA=∠EFA=90°.
在△AEG和△EFA中:
∠EAG=∠EAF,∠EGA=∠EFA,AE=AE,
∴△EGA≌△EFA(AAS).
证明:(2)∵AE平分∠CAD且EF⊥AC,EG⊥AD,
∴EG=EF,∠EGB=∠EFC=90°.
在Rt△EGB和Rt△EFC中
.
∴Rt△EGB≌Rt△EFC(HL).
∴BG=CF.
又∵BG=AB+AG,CF=AC-AF,
即AB+AG=AC-AF,
又∵△EGA≌△EFA,
∴AG=AF.
∴2AF=AC-AB=5-3=2.
∴AF=1.
解析分析:已知AE平分∠CAD,EF⊥AC,EG⊥AD及公共边AE,则利用AAS判定△EGA≌△EFA;由△EGA≌△EFA可得到EG=EF,AG=AF,根据HL可判定Rt△EGB≌Rt△EFC,从而得到BG=CF,整理可得到2AF=AC-AB,从而可求得AF的长.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.