已知:如图,在Rt△ABC中,∠C=90°,D、E分别为AB、AC边上的点,且,连接DE.若AC=3,AB=5,猜想DE与AB有怎样的位置关系?并证明你的结论.
网友回答
猜想:DE与AB的位置关系是互相垂直.
证明:∵AC=3,AB=5,,
∴.
∵∠A=∠A,
∴△ADE∽△ACB.
∵∠C=90°,
∴∠ADE=∠C=90°.
∴DE⊥AB.
解析分析:根据△ADE与△ACB两边对应成比例及一夹角相等,证明两三角形相似,然后利用相似三角形的性质即可得到∠ADE=∠C=90°,从而得到DE与AB的位置关系是互相垂直.
点评:此题考查了垂直定义及相似三角形的性质,根据图形的特点找到公共角,并根据各边的比得到相似比是解题的关键.